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1. Context

Collaboration to cope with
large-scale attacks
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Background

Distributed attacks are more frequent, and
also target industrial systems...

Mirai (2016) = Uses TCP probing, and bruteforces logins

WannaCry & NotPetya (2017) = Exploit MS17-010
AZORult (2018) = Uses known C2s

Ryuk (2018) = Uses Emotet / Trickbot
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Four observations*:

*From 71 reviewed papers, including 15 surveys

(a)

(c)

There is a lack of collective knowledge
in cybersecurity, and more particularly
in the OT.

Centralized systems represent a
Single Point of Failure and can induce
a communication overhead.

(b)

(d)

Thesis objective

Trust and privacy are major hurdle
for stakeholders to share data.

The siloed architecture of detection
systems is an obstacle to their
effectiveness.

R.Q: How to federate knowledge
and defense between non-trusting
parties?

What to collect?
What to share?

How to share it?



2. Current state

Writing a survey on automated
collaborative security
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Over the internet
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Fig. 1. Federated reference architecture

Horizontal FL: aggregation
of homogeneous models

Note: collection of
additional data could be
performed using a Honeypot
Factory
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State-of-the-Art

Classification of devices (either automatically, or with predefined classes)

Train per-class behavior models using network features / sensor values to
obtain a “normal traffic” fingerprint

Multiple layer memory-based NN (LSTM, GRU)

Softmax (to classify the output in either ‘normal’ or ‘attack’, or different
classes of attacks)



3. Next steps

Building experiments on the best
use-cases




Reproducibility

Implement FL of the selected works:

-

Nguyen et al. 2019 |6
Rathore et al. 2019 |3/

Li et al 2020 | /|
Schneble et al. 2019 | 5]
Chen et al. 2020 ||

Pahl and Aubet 2018 | 10|
Zhang et al. 2020 |11/
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Experiment-driven research

IT networks

Detecting threats in
typical IT networks with
high traffic volume.

L

Smart Factory

Detection of distributed
attacks in the context of
CPSs & lloTs.

~

Smart building

Detecting anomalies in
heterogeneous and
partitioned
environments.
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Test beds

Fig. 4. Cencyble (IMT Atlantique)

Fig. 4. Airbus CyberRange Fig. 3. Industrial testbed (Chaire CyberCNI)
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Fig. 5. 520 spaces (TUM)



Conclusion

Federated architectures for knowledge & defense between
non-trusting parties

e Ongoing survey: identify the possibilities from the literature
o Nextsteps:
a. reproduce and compare the state-of-the-art

b. build the testbeds to host the experiments




