Switched-based Resilient Control of Cyber-Physical Systems

Mariana Segovia Ferreira

Joaquin Garcia-Alfaro, Ana R. Cavalli, and Jose Rubio-Hernan

June 24, 2021

Table of contents

Introduction

4 Conclusion & Future Work

Introduction			
00000	0000	0000000	00000

Introduction

Introduction 00000		

Cyber-Physical Systems

- Control physical process
- Distributed system

Figure 1: Tennessee Eastman Challenge Process [1].

[1] Ricker, "Decentralized control of the Tennessee Eastman Challenge Process," 1996.

Introduction 00000		

System Model

Feedback Control Loop: The controller uses the system outputs as inputs to correct the behavior using a mathematical model.

Figure 2: Normal Behavior.

Introduction		
00000		

Problem

Cyber-Physical Adversary

Figure 3: Cyber-Physical Attack.

Introduction		

Motivation

- Cyber-Physical Adversaries may have a real impact in the physical world
 - Australian water services attack [2]
 - Ukraine attack [3]
 - Stuxnet malware [4]
- Security and safety
- Existing approaches are manual or hardwired with a fixed response that cannot be configured [5]
- Ensuring safety using information security tools is not enough
- [4] Falliere et al., "W32. stuxnet dossier," 2011.
- [3] Case, "Analysis of the cyber attack on the ukrainian power grid," 2016.
- [2] Slay et al., "Lessons learned from the maroochy water breach," 2008.
- [5] Piedrahita et al., "Leveraging software-defined networking for incident response in ICS," 2018.

Switched Resilient Control	
0000	

	Switched Resilient Control	
Summary		

- Switched Linear Control System with decentralized controllers
- Absorb and recover from attacks while guaranteeing the stability
- ▶ Validated using the Tennessee Eastman problem [1]

[1] Ricker, "Decentralized control of the Tennessee Eastman Challenge Process," 1996.

Switched Resilient Control	
0000	

▶ Differential equations \rightarrow Transfer function \rightarrow State-space model

Switched Resilient Control	
0000	

- ▶ Differential equations \rightarrow Transfer function \rightarrow State-space model
- Linear Time Invariant (LTI) System

$$x_{k+1} = Ax_k + Bu_k + w_k$$

$$y_k = Cx_k + v_k$$
(1)

Switched Resilient Control	
0000	

▶ Differential equations \rightarrow Transfer function \rightarrow State-space model

Linear Time Invariant (LTI) System

$$x_{k+1} = Ax_k + Bu_k + w_k$$

$$y_k = Cx_k + v_k$$
(1)

Linear Time Variant (LTV) System

$$x_{k+1} = A_{\sigma(k)}x_k + B_{\sigma(k)}u_k + w_k$$

$$y_k = C_{\sigma(k)}x_k + v_k$$
(2)

where $\sigma : \mathbb{Z}^+ \to \mathcal{I}$, with $\mathcal{I} = \{1, ..., N\}$ is the subset that contains the indexes of the subsystems and $k \in \mathbb{Z}^+$ in the time interval

Switched Resilient Control	
0000	

Figure 4: Approach Architecture.

M. Segovia, J. Rubio-Hernan, A.R. Cavalli, J. Garcia-Alfaro, *Switched-Based Resilient Control of Cyber-Physical Systems*, in IEEE Access, vol. 8, pp. 212194-212208, 2020.

Switched-based Resilient Control of Cyber-Physical Systems

		Validation	
00000	0000	0000000	00000

Validation

		Validation	
00000 0	000	0000000	00000

Evaluation - Tennessee Eastman Problem

Input	Description
u1	Feed 1 valve position
u2	Feed 2 valve position
u3	Purge valve position
u4	Liquid inventory setpoint

Output	Description	
Р	Pressure	
F4	Product flow	
VL	Liquid inventory	
yA3	Amount of A in purge	

Figure 5: Reduced Tennessee Eastman.

	Validation 0000000	

Switched-based Resilient Control of Cyber-Physical Systems

	Validation	
	0000000	

Figure 7: Switching Signal.

00000000	

		Validation	
00000	0000	00000000	00000

Figure 9: Root Mean Square Error - Traditional vs. Proposed Design.

	Validation	
	00000000	

Figure 10: Attack Case - Traditional vs. Proposed Design.

	Validation 0000000●	

Attack Effort Evaluation

Tennesse Eastman problem: 12⁴¹ possible models (approx. 2¹⁴⁷)

Adversary	Learned Models	Required time effort
Model 1	15%	$2.5 imes10^{37}$ years
Model 2	30%	$5 imes 10^{37}$ years
Model 3	50%	$8.4 imes10^{37}$ years

Table 1: Attack Effort.

	Conclusion & Future Work ●0000

Conclusion and Future Work

		Conclusion & Future Work
Conclusion		

- Control theory and cybersecurity provide complementary information
 - Collaboration between network & physical layers
 - Time Invariant System \rightarrow Time Variant System
- Resilient systems can be modeled as Switched Control System
- How to ensure stability when switching unstable models (attacks)

	Conclusion & Future Work

Future work

Limitations

- Evaluate the performance impact (cyber components)
- Testing environment

Open Research Lines

- Performance impact
- Digital twins
- Testing automation

	Conclusion & Future Work 00000

References

- N. L. Ricker, "Decentralized control of the Tennessee Eastman Challenge Process," Journal of Process Control, vol. 6, no. 4, pp. 205 – 221, 1996.
- [2] J. Slay and M. Miller, "Lessons learned from the maroochy water breach," in *Critical Infrastructure Protection* (E. Goetz and S. Shenoi, eds.), (Boston, MA), pp. 73–82, Springer US, 2008.
- [3] D. U. Case, "Analysis of the cyber attack on the ukrainian power grid," *Electricity Information Sharing and Analysis Center (E-ISAC)*, 2016.
- [4] N. Falliere, L. O. Murchu, and E. Chien, "W32. stuxnet dossier," White paper, Symantec Corp., Security Response, vol. 5, p. 6, 2011.
- [5] A. F. M. Piedrahita, V. Gaur, J. Giraldo, A. A. Cardenas, and S. J. Rueda, "Leveraging software-defined networking for incident response in industrial control systems," *IEEE Software*, vol. 35, pp. 44–50, January 2018.

	Conclusion & Future Work
	00000

Thank you! Questions?

Publications

Journal papers

- M. Segovia, J. Rubio-Hernan, A.R. Cavalli, J. Garcia-Alfaro, Cyber-Resilience A Systematic Survey of Resilience Techniques for Cyber-Physical Systems, [Under Evaluation].
- M. Segovia, J. Rubio-Hernan, A.R. Cavalli, J. Garcia-Alfaro, Switched-Based Resilient Control of Cyber-Physical Systems, in IEEE Access, vol. 8, pp. 212194-212208, 2020.

Conference papers

- M. Segovia, J. Rubio-Hernan, A.R. Cavalli, J. Garcia-Alfaro, Switched-based Control Testbed to Assure Cyber-Physical Resilience by Design, [Under Evaluation].
- M. Segovia, J. Rubio-Hernan, A.R. Cavalli, J. Garcia-Alfaro, *Cyber-Resilience Evaluation of Cyber-Physical Systems*, in "NCA 2020", pp. 1-8, Boston, USA, November 2020.
- M. Segovia, A.R. Cavalli, N. Cuppens, J. Rubio-Hernan, J. Garcia-Alfaro, *Reflective Mitigation of Cyber-Physical Attacks*, in "CyberICPS 2019/ESORICS 2019", pp.19-34, Springer, Luxembourg, September 2019.
- M. Segovia, A.R. Cavalli, N. Cuppens, J. Garcia-Alfaro, A Study on Mitigation Techniques for SCADA-driven Cyber-Physical Systems, in "FPS 2018", pp. 257-264, Springer, Montreal, Canada, November 2018.

Experimental Testbed

Figure 11: Resilient Water Tank Testbed.

M. Segovia et al. , "Switched-based Control Testbed to Assure Cyber-Physical Resilience by Design", [Under Evaluation].

Next model to be executed

 $hash(K1, j) \mod N$

K1 - key selected by the orchestrator j - number of switching interval N - number of physical models

Network configuration transformation

 $hash(K2, j) \mod P$

K2 - key selected by the orchestrator P - Virtual IP address

SISO vs. MIMO design

Figure 12: Centrlized Design.

[Picture] Garrido et al., "Centralized multivariable control by simplified decoupling", 2012.

Distributed Controllers Design

Figure 13: Transfer Function Matrix Factorization.

Stability

Figure 14: Stable system with Lyapunov decreasing sequence.

[Picture] Lin et al., "Stability and Stabilizability of Switched Linear Systems: A Survey", 2009.

Stability

Figure 15: Stable system with unstable periods.

[Picture] Lin et al., "Stability and Stabilizability of Switched Linear Systems: A Survey", 2009.

Digital Twin

- ✓ Predict behavior
- ✓ Detect attacks (*)
 - ? Repair the system state
 - ? Regression automated testing

Figure 16: Digital Twin.

(*) Schellenberger et al. , "Detection of covert attacks on CPS by extending the system dynamics with an auxiliary system", 2017.

[Picture] Tao et al., "Digital Twins and CPS toward Smart Manufacturing and Industry 4.0: Correlation and Comparison", 2019.

Switched-based Resilient Control of Cyber-Physical Systems