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Supervisory context
For doctoral students

Optimization of security risk for learning on heterogeneous

Supervision: data

0 Laurent Pautet
0 Thomas Robert

0 Jean Leneutre

Progress of the thesis:

1 Started 10/03/2020 - 09/03/2023
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INtroduction

An intrusion detection system (IDS) is a key component of the network security

Q Misuse based IDS F —
=, | Firewall
[ / ESESEoES Corporate Network
Q Anomaly based IDS INTERNET W —e-- PR
Machine learning techniques in IDS - gon

IDS
Machine learning models are vulnerable to adversarial examples (Goodfellow, 2015)
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https://arxiv.org/abs/1412.6572

INtroduction

Adversarial attack

a2  White-box: an attacker has access to the parameter, algorithms, and structure of the target model (e.g. Fast Gradient Sign method (FGSM) , Carlini &
Waaner attacks (Carlini and Wagner, 2016))

a  Black-box: an attacker cannot obtain information about the target Model

Defense mechanisms against adversarial attacks

a  Adversarial training (Goodfellow, 2015): the basic idea merely to create and then incorporates adversarial examples into the training process.

a  Other methods: e.g. Gradient Hiding (Athalye , 2018) and Defensive Distillation (Papernot, 2015)

Assess the defense mechanism against the attack mechanism.
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https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1608.04644
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1802.00420
https://arxiv.org/abs/1511.04508

Research Objective

short-term objective: single IDS sensing

How does considering settings determined independently could impact performance either on the attacker or on the defender
side?

0 What are the risks associated with an attacker that trains an attack generator to perform repeated adversarial attacks against a system
protected by an IDS strengthened with adversarial training?

0 What is the impact of the resources invested by the attacker on the defender’s performance (specifically when the attacker uses an
augmented dataset in the training process)?

Long-term objective: multi-sensing defense architecture
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Basic adversarial attack scenario

Train IDS to detect
DoS attack

Genuine Dataset D
(e.g. NSL-KDD)

Py >

No Adversarial

Black-Box attacks
Evasion attacks

GAN as attack generator

\ Attacker

Evasion increase rate
(EIR) is 100% after
training GAN attack
generator with 100

epochs

Train GAN using different
parameters (e.g., augmented

» queries -«

Training
IDS detection
rate (DR) on
DoS class is
88%
IDS
Train IDS on D ‘
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Robust IDS- adversarial training

With Adversarial
Training

Adversarial Datasets D
(e.g. DDg1 DDg2 )

Train IDS on D
Optional :

> — 5 Train IDS using adwversarial
training

IDS detection rate
(DR) on DoS class

Black-Box attacks
Ewvasion attacks

GAN as attack generator

vary between 86
and 88%

IDS trained on adversarial training
(e.g. IDS-DDa1, IDS-DDaz2)
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Evasion increase
rate (EIR) is 0%
after launching the
attacker without
any refinement
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Attack refinement- increase computational resources

. . o Black-.Box attacks
With Adversarial Training + RN e i
attacks refinement

Adversarial Datasets D IDS trained on adversarial fraining
(e.g. DDg1 DDo2 ) (e.g. IDS-DDa1, IDS-DDa2) i———_-___

X Sl Train IDS on D r/ \. Attacker D
£ = — Optional : . > queries )‘
| Y | > — Train IDS using adversarial >| p / DS 4

o] training L& | / S
de ==

Modifying the computational time resources by training GAN on 100, 1000 and 5000 epochs.

As a statistical test we repeat each experiments 50 times .
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GAN-A1-100 results on IDS-DDal

GAN-A1-100 on IDS_dda1 GAN-A1-100 on IDS_ddaZ2
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Attack success on IDS DDa1i: 14/50 with EIR > 85%
Attack success on IDS DDa2: 7/50 with EIR > 70%
Attack success on IDS DDa3 and on IDS DDa4: 0/50
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GAN-A1-1000 results on IDS-DDail

GAN-A1-1000 on IDS_dda1 GAN-A1-1000 on IDS_ddaZ2
10

B0
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Attack success on IDS_DDa1l: 36/50 with EIR > 80% and 1/50 with EIR = 39%
Attack success on IDS_DDa2: 20/50 with EIR > 70% , 1/50 with EIR = 50% and 1/50 with EIR = 39%
Attack success on IDS DDa3: 2/50 with EIR > 85%
Attack success on IDS_DDa4: 0/50
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GAN-A1-5000 results on IDS-DDal

GAN-A1-5000 on IDS_dda1 GAN-A1-5000 on IDS_dda2
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Attack success on IDS_DDa1: 46/50 with EIR > 76%
Attack success on IDS_DDa2: 31/50 with EIR > 70% , 2/50 with EIR between [60, 69] and 2/50 with EIR between [35, 40]

* Attack and défdagesscaksaguingbeaBndotied vepetinglon resource spent
» Training process on attack §HacericiessogdRsatdladir ahwahabirarld9ehavior (either very successful to

evade detection or useless).
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Attack refinement- train attack generator

with augmented dataset

With Adversarial Training +
attacks refinement

Black-Box attacks
Evasion attacks
GAN as attack generator

Altacker

GAN-A2 Datasets
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Conclusions and Future work

o Attack and defense scale against each other depending on resource
spent

e EXplore feature space vs input space perturbations to achieve more
realistic attack generators.

« Formalize the experimental framework and try to improve its
reuse.

o Consider flow-based IDS, and distributed flow-based IDS, try to
characterize their performance beyond testing on a given dataset.
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