Chaire Cyber CNI

Chaire Cyber CNI – Cybersecurity for Critical Networked Infrastructures

Enquête sur la désinformation par IA générative

La désinformation alimentée par l’intelligence artificielle générative représente un enjeu majeur pour la société et la cybersécurité. Dans le cadre d’un projet de recherche à l’échelle européenne, la Chaire Cyber CNI lance une enquête et invite les experts à partager leur expérience. Ce travail est mené conjointement par l’IMT Atlantique (Marc-Oliver Pahl, Elie Chedemail) et la Frankfurt University of Applied Sciences (Martin Kappes, Alexander Loth).

Retour sur la 8ᵉ édition de l’atelier Manage-IoT – 12 mai 2025, Honolulu

Le 12 mai 2025, la 8ᵉ édition de l’atelier Manage-IoT s’est tenue à Honolulu, lors du symposium IEEE/IFIP NOMS 2025. Cet événement a réuni des experts autour de la gestion des réseaux et des systèmes IoT. Les discussions ont porté sur la gestion à base d’intentions, la sécurisation des systèmes IoT hétérogènes et l’Industrie 5.0. Découvrez les moments clés de cette rencontre et son lien avec les travaux de la chaire.

Help us spreading the word: 5th Future-IoT “IoT meets Autonomy”, Berlin 29.8.-2.9.2022

Please help us spreading the news that the registration is open for our 5th Future-IoT.org PhD school on “IoT meets Automation” from Aug 29-Sep2, 2022 in Berlin: https://school.future-iot.org. Below you find the corresponding email. Please share it in your communities via mail, LinkedIN, etc. Looking forward to welcoming many of you and your students in Berlin!

Cyber CNI 2021 fall Research Updates: Update of our Platform

The cyberCNI.fr (https://cyberCNI.fr/) Research Update (Spring/ Fall) happens once per semester. It is the big status event of the chair Cyber CNI. All works around the chair are presenting their progress, current works, and next challenges. In this talk, our research engineer Fabien Autrel presents how we improved our testbed based on Fischertechnik and CyberRange technologies.

Chaire CyberCNI @EDF Paris (21.9.2021) – Hassan CHAITOU, Security risk optimization for learning on heterogeneous quality data

On Sep 21, 2021, we had the pleasure to visit our partner EDF in Paris Palaiseau! Here is another highlight presentation:

Hassan CHAITOU, Security risk optimization for learning on heterogeneous quality data
A classifier is a component used in the automation of “decision-making” or complex data abstraction: intruder detection, speed limitation extraction. For an efficient classifier, the training must be on a large volume of data and be renewed over time by integrating or revoking certain learning data. From a security point of view, this process represents a risk since it offers the attacker various ways of degrading classifier performance (either by forcing classifications mischievous, either by randomly degrading its performance). These two types of attacks require more or less effort from the attacker.

This risk is exacerbated when data comes from sources (network equipment, organizations) corresponding to heterogeneous trust levels. Hassan’s thesis aims at controlling the risk associated with this update via game theory in the case where the confidence in the learning data is not homogeneous.

View More