Chaire Cyber CNI

Chaire Cyber CNI – Cybersecurity for Critical Networked Infrastructures

PhD Defense Raphael Larsen: Traçabilité et intégrité de l’information au sein de systèmes critiques : analyse et proposition de méthodes statistiques

Le 07/03/2022 à 09:30, M. Raphaël LARSEN, Département ITI – laboratoire LATIM soutiendra publiquement ses travaux en vue de l’obtention du grade de “Docteur d’IMT Atlantique”. Vous trouverez le streaming en direct et l’enregistrement ici : https://www.youtube.com/watch?v=E4tqlu-3EHs

It was a pleasure to work with EDF partners, particularly Paul Lajoie-Mazenc who consistently followed our progression from the beginning until the end, and our colleague Simon Foley.

Always nice to have feedback from industrial partners to guide our research.

Raphael Larsen

Abstract

Industrial systems often work for years and their devices are sometimes energetically constrained so that new security measures are not practicable. Passive solutions, i.e., with only data at hand, to the problem of system physical processes security through sensors, actuators and automata values monitoring are studied. The major part of our work concerns data integrity, that is the fact that data linked to a set of actions of the system are not unexpectedly modified, and information traceability which we define as the capability to authenticate each process of data transformation from their creation by the industrial system to their end use. We propose a new concept of Cyber-Physical System state that machine learning models can use to handle the issue of data integrity and we use it with the autoencoder. We propose a new class of Deep Learning classifiers with a measure of confidence in the prediction which we use for information traceability.

Résumé

Les systèmes industriels sont voués à fonctionner des années durant et leurs dispositifs font parfois face à des contraintes énergétiques empêchant la mise en place de nouveaux moyens de sécurité. Nous étudions donc des solutions passives, c’est-à-dire n’ayant besoin que des données, au problème de surveillance des processus physiques de systèmes industriels par l’observation des valeurs des capteurs, des actionneurs et des commandes des automates. La majeure partie de nos travaux concerne l’intégrité de ces données qui se traduit par le fait que les données liées à un ensemble d’actions du système n’ont pas subies un changement inattendue et la traçabilité de l’information que nous définissons comme la capacité d’authentifier chaque processus de transformation des données depuis leur création par le système industriel jusqu’à leur dernière utilisation. Nous proposons un nouveau concept d’état de Système Cyber-Physique que les modèles d’apprentissage automatique peuvent utiliser pour répondre aux questions de l’intégrité et de la traçabilité des données et nous l’appliquons plus particulièrement à l’autoencoder. Nous proposons un nouveau type de réseau de neurones classifieur accompagné d’une mesure de confiance qui nous permet de répondre à notre problème de traçabilité.

Mots-clés

Sécurité, Apprentissage automatique, Système de contrôle industriel

Le jury est composé de

M. Gouenou COATRIEUX (Professeur, IMT Atlantique)
M. Laurent NANA (Professeur, Université de Bretagne Occidentale)
M. Riadh ABDELFATTAH (Professeur, École supérieure des télécommunications de Tunisie (SUPCOM))
Mme Johanne VINCENT (Maître de conférences, IMT Atlantique)
M. Grégoire MERCIER (CTO, Exo makina)
M. Eric TOTEL(Professeur, Télécom SudParis)

Marc-Oliver Pahl

Related Posts

Leave a Reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.